107 research outputs found

    L1-based Model Following Control of an Identified Helicopter Model in Hover

    Get PDF
    In the last decades commuting traffic in large metropolitan areas has posed a serious problem to the international community. Due to delays and pollution caused by traffic jams, every year bilions of euros are spent only in Europe. The european project myCopter had the goal of revolutioning the current transportation system by investigating all the social, logistic and technical implications of personal aerial transportation. During myCopter project the ideal dynamic of a Personal Aerial Vehicle (PAV) was developed through esperiment with naive pilots to be the easiest and most intuitive to fly. The Max Plank Institute for Biological Cybernetic has researched the possibility of augmenting the dynamic of an identified light civil helicopter in hover to resemble the behavior of a PAV. The solution proposed in this thesis is a two step procedure to overcome the limitations of previous attemps and provide a control architecture that works when uncertainties in the identified parameters of the helicopter model are taken into account. First, no uncertainty in the identified parameters are considered. A PID-based model following controller is implemented with the goal of tracking the PAV model. The solution provides adequate model following in the nominal case but is not robust to parametric uncertainties. Then, an adaptive controller is added to the system to reduce the effect of uncertainties and restore the nominal behaviour of the augmented helicopter. Finally, the design is validated with Montecarlo simulation

    User-Driven Design and Development of an Underwater Soft Gripper for Biological Sampling and Litter Collection

    Get PDF
    Implementing manipulation and intervention capabilities in underwater vehicles is of crucial importance for commercial and scientific reasons. Mainstream underwater grippers are designed for the heavy load tasks typical of the industrial sector; however, due to the lack of alternatives, they are frequently used in biological sampling applications to handle irregular, delicate, and deformable specimens with a consequent high risk of damage. To overcome this limitation, the design of grippers for marine science applications should explicitly account for the requirements of end-users. In this paper, we aim at making a step forward and propose to systematically account for the needs of end-users by resorting to design tools used in industry for the conceptualization of new products which can yield great benefits to both applied robotic research and marine science. After the generation of the concept design for the gripper using a reduced version of the House of Quality and the Pugh decision matrix, we reported on its mechanical design, construction, and preliminary testing. The paper reports on the full design pipeline from requirements collection to preliminary testing with the aim of fostering and providing structure to fruitful interdisciplinary collaborations at the interface of robotics and marine science

    Frontal lobe metabolic alterations in autism spectrum disorder: a 1H-magnetic resonance spectroscopy study.

    Get PDF
    Recently, neuroimaging studies were performed using 1H-magnetic resonance spectroscopy (1H-MRS), revealing a quantitative alteration of neurochemicals (such as neurotransmitters and metabolites) in several brain regions of patients with autism spectrum disorder (ASD). The involvement of the frontal lobe in the neurobiology of ASD has long been documented in the literature. Therefore, the aim of this study was to analyze the alterations of N-acetylaspartate/creatine (NAA/Cr) and choline/Cr (Cho/Cr) ratios in the frontal lobe subcortical white matter (WM) in ASD patients, in order to reveal any alteration of metabolites that might be the expression of specific clinical features of the disorder

    A New Coastal Crawler Prototype to Expand the Ecological Monitoring Radius of OBSEA Cabled Observatory

    Get PDF
    The use of marine cabled video observatories with multiparametric environmental data collection capability is becoming relevant for ecological monitoring strategies. Their ecosystem surveying can be enforced in real time, remotely, and continuously, over consecutive days, seasons, and even years. Unfortunately, as most observatories perform such monitoring with fixed cameras, the ecological value of their data is limited to a narrow field of view, possibly not representative of the local habitat heterogeneity. Docked mobile robotic platforms could be used to extend data collection to larger, and hence more ecologically representative areas. Among the various state-of-the-art underwater robotic platforms available, benthic crawlers are excellent candidates to perform ecological monitoring tasks in combination with cabled observatories. Although they are normally used in the deep sea, their high positioning stability, low acoustic signature, and low energetic consumption, especially during stationary phases, make them suitable for coastal operations. In this paper, we present the integration of a benthic crawler into a coastal cabled observatory (OBSEA) to extend its monitoring radius and collect more ecologically representative data. The extension of the monitoring radius was obtained by remotely operating the crawler to enforce back-and-forth drives along specific transects while recording videos with the onboard cameras. The ecological relevance of the monitoring-radius extension was demonstrated by performing a visual census of the species observed with the crawler’s cameras in comparison to the observatory’s fixed cameras, revealing non-negligible differences. Additionally, the videos recorded from the crawler’s cameras during the transects were used to demonstrate an automated photo-mosaic of the seabed for the first time on this class of vehicles. In the present work, the crawler travelled in an area of 40 m away from the OBSEA, producing an extension of the monitoring field of view (FOV), and covering an area approximately 230 times larger than OBSEA’s camera. The analysis of the videos obtained from the crawler’s and the observatory’s cameras revealed differences in the species observed. Future implementation scenarios are also discussed in relation to mission autonomy to perform imaging across spatial heterogeneity gradients around the OBSEA

    Advancing fishery-independent stock assessments for the Norway lobster (Nephrops norvegicus) with new monitoring technologies

    Get PDF
    The Norway lobster, Nephrops norvegicus, supports a key European fishery. Stock assessments for this species are mostly based on trawling and UnderWater TeleVision (UWTV) surveys. However, N. norvegicus are burrowing organisms and these survey methods are unable to sample or observe individuals in their burrows. To account for this, UWTV surveys generally assume that "1 burrow system = 1 animal", due to the territorial behavior of N. norvegicus. Nevertheless, this assumption still requires in-situ validation. Here, we outline how to improve the accuracy of current stock assessments for N. norvegicus with novel ecological monitoring technologies, including: robotic fixed and mobile camera-platforms, telemetry, environmental DNA (eDNA), and Artificial Intelligence (AI). First, we outline the present status and threat for overexploitation in N. norvegicus stocks. Then, we discuss how the burrowing behavior of N. norvegicus biases current stock assessment methods. We propose that state-of-the-art stationary and mobile robotic platforms endowed with innovative sensors and complemented with AI tools could be used to count both animals and burrows systems in-situ, as well as to provide key insights into burrowing behavior. Next, we illustrate how multiparametric monitoring can be incorporated into assessments of physiology and burrowing behavior. Finally, we develop a flowchart for the appropriate treatment of multiparametric biological and environmental data required to improve current stock assessment methods

    Developing technological synergies between deep-sea and space research

    Get PDF
    Recent advances in robotic design, autonomy and sensor integration create solutions for the exploration of deep-sea environments, transferable to the oceans of icy moons. Marine platforms do not yet have the mission autonomy capacity of their space counterparts (e.g., the state of the art Mars Perseverance rover mission), although different levels of autonomous navigation and mapping, as well as sampling, are an extant capability. In this setting their increasingly biomimicked designs may allow access to complex environmental scenarios, with novel, highly-integrated life-detecting, oceanographic and geochemical sensor packages. Here, we lay an outlook for the upcoming advances in deep-sea robotics through synergies with space technologies within three major research areas: biomimetic structure and propulsion (including power storage and generation), artificial intelligence and cooperative networks, and life-detecting instrument design. New morphological and material designs, with miniaturized and more diffuse sensor packages, will advance robotic sensing systems. Artificial intelligence algorithms controlling navigation and communications will allow the further development of the behavioral biomimicking by cooperating networks. Solutions will have to be tested within infrastructural networks of cabled observatories, neutrino telescopes, and off-shore industry sites with agendas and modalities that are beyond the scope of our work, but could draw inspiration on the proposed examples for the operational combination of fixed and mobile platforms

    Advancing fishery-independent stock assessments for the Norway lobster (Nephrops norvegicus) with new monitoring technologies

    Get PDF
    The Norway lobster, Nephrops norvegicus, supports a key European fishery. Stock assessments for this species are mostly based on trawling and UnderWater TeleVision (UWTV) surveys. However, N. norvegicus are burrowing organisms and these survey methods are unable to sample or observe individuals in their burrows. To account for this, UWTV surveys generally assume that “1 burrow system = 1 animal”, due to the territorial behavior of N. norvegicus. Nevertheless, this assumption still requires in-situ validation. Here, we outline how to improve the accuracy of current stock assessments for N. norvegicus with novel ecological monitoring technologies, including: robotic fixed and mobile camera-platforms, telemetry, environmental DNA (eDNA), and Artificial Intelligence (AI). First, we outline the present status and threat for overexploitation in N. norvegicus stocks. Then, we discuss how the burrowing behavior of N. norvegicus biases current stock assessment methods. We propose that state-of-the-art stationary and mobile robotic platforms endowed with innovative sensors and complemented with AI tools could be used to count both animals and burrows systems in-situ, as well as to provide key insights into burrowing behavior. Next, we illustrate how multiparametric monitoring can be incorporated into assessments of physiology and burrowing behavior. Finally, we develop a flowchart for the appropriate treatment of multiparametric biological and environmental data required to improve current stock assessment methods

    Serum Albumin Is Inversely Associated With Portal Vein Thrombosis in Cirrhosis

    Get PDF
    We analyzed whether serum albumin is independently associated with portal vein thrombosis (PVT) in liver cirrhosis (LC) and if a biologic plausibility exists. This study was divided into three parts. In part 1 (retrospective analysis), 753 consecutive patients with LC with ultrasound-detected PVT were retrospectively analyzed. In part 2, 112 patients with LC and 56 matched controls were entered in the cross-sectional study. In part 3, 5 patients with cirrhosis were entered in the in vivo study and 4 healthy subjects (HSs) were entered in the in vitro study to explore if albumin may affect platelet activation by modulating oxidative stress. In the 753 patients with LC, the prevalence of PVT was 16.7%; logistic analysis showed that only age (odds ratio [OR], 1.024; P = 0.012) and serum albumin (OR, -0.422; P = 0.0001) significantly predicted patients with PVT. Analyzing the 112 patients with LC and controls, soluble clusters of differentiation (CD)40-ligand (P = 0.0238), soluble Nox2-derived peptide (sNox2-dp; P < 0.0001), and urinary excretion of isoprostanes (P = 0.0078) were higher in patients with LC. In LC, albumin was correlated with sCD4OL (Spearman's rank correlation coefficient [r(s)], -0.33; P < 0.001), sNox2-dp (r(s), -0.57; P < 0.0001), and urinary excretion of isoprostanes (r(s), -0.48; P < 0.0001) levels. The in vivo study showed a progressive decrease in platelet aggregation, sNox2-dp, and urinary 8-iso prostaglandin F2 alpha-III formation 2 hours and 3 days after albumin infusion. Finally, platelet aggregation, sNox2-dp, and isoprostane formation significantly decreased in platelets from HSs incubated with scalar concentrations of albumin. Conclusion: Low serum albumin in LC is associated with PVT, suggesting that albumin could be a modulator of the hemostatic system through interference with mechanisms regulating platelet activation

    Beta-Blocker Use in Older Hospitalized Patients Affected by Heart Failure and Chronic Obstructive Pulmonary Disease: An Italian Survey From the REPOSI Register

    Get PDF
    Beta (β)-blockers (BB) are useful in reducing morbidity and mortality in patients with heart failure (HF) and concomitant chronic obstructive pulmonary disease (COPD). Nevertheless, the use of BBs could induce bronchoconstriction due to β2-blockade. For this reason, both the ESC and GOLD guidelines strongly suggest the use of selective β1-BB in patients with HF and COPD. However, low adherence to guidelines was observed in multiple clinical settings. The aim of the study was to investigate the BBs use in older patients affected by HF and COPD, recorded in the REPOSI register. Of 942 patients affected by HF, 47.1% were treated with BBs. The use of BBs was significantly lower in patients with HF and COPD than in patients affected by HF alone, both at admission and at discharge (admission, 36.9% vs. 51.3%; discharge, 38.0% vs. 51.7%). In addition, no further BB users were found at discharge. The probability to being treated with a BB was significantly lower in patients with HF also affected by COPD (adj. OR, 95% CI: 0.50, 0.37-0.67), while the diagnosis of COPD was not associated with the choice of selective β1-BB (adj. OR, 95% CI: 1.33, 0.76-2.34). Despite clear recommendations by clinical guidelines, a significant underuse of BBs was also observed after hospital discharge. In COPD affected patients, physicians unreasonably reject BBs use, rather than choosing a β1-BB. The expected improvement of the BB prescriptions after hospitalization was not observed. A multidisciplinary approach among hospital physicians, general practitioners, and pharmacologists should be carried out for better drug management and adherence to guideline recommendations
    • …
    corecore